
CSS534 – Project 1 – Solve the Traveling Salesman Problem 

using Genetic Algorithms and OpenMP 

Nathaniel J. Grabaskas 
Computing and Software Systems, University of Washington 

 
 

Table of Contents 
Section 1: Introduction ............................................................................................................................. 2 

Section 2: Greedy Crossover (GX) ............................................................................................................ 2 

Section 3: Greedy Crossover Nearest Neighbor (GXNN) ......................................................................... 2 

Section 4: Parallelization Techniques and Methods ............................................................................... 3 

Section 5: Challenges................................................................................................................................ 4 

Section 6: Conclusion ............................................................................................................................... 4 

Appendix A – GX ....................................................................................................................................... 5 

Appendix B – GXNN .................................................................................................................................. 8 

Appendix C – Source Files ...................................................................................................................... 10 

 

  



Section 1: Introduction  
I had two initial goals: solving the Traveling Salesman Problem (TSP) using Genetic Algorithms 

(GA) and optimizing it for a Parallel Environment (PE) using OpenMP. For all examples I used a 

population of 36 cities and a generation size of 50,000 chromosomes. For each generation I take the 

fittest 25,000 chromosomes and use those to create an additional 25,000 offspring. This is done for 150 

generations.  

First, I started with implementing a Greedy Crossover (GX) and can be seen in section 2. This 

method proved to be acceptable with a speed-up around ~7 times and found a fastest route of < 449. 

Next, I moved onto an implementation of the Greedy Crossover using Nearest Neighbor (GXNN) and the 

results can be seen in section 3. In section 4, I discuss the methods and strategy to increase performance 

using parallelization through OpenMP. After that in section 5 I discuss some of the challenges that I had 

to overcome. In the conclusion I discuss the overall results achieved. 

Section 2: Greedy Crossover (GX) 
The GX takes the first city of parent[i] and finds the shortest connected city from both parent[i] and [i+1] 

and uses that city as the next city in the chromosome. If the city is the last city in the trip it then takes 

the first city as the connected city. See figure 1. 

 

Figure 1: Shows the GX where distance from A to X is less than from A to Z. If both X and Z were already a 

part of child[i] a new city would be chosen at random. 

This algorithm proved to run at ~7 times speed-up or an execution time of < 4M. Depending on the 

mutation rate this approach finds slightly different optimal routes. A mutation rate of 40 was found to 

be the best rate and returned a trip with 447.638 distance. Output and code can be seen in Appendix A. 

Section 3: Greedy Crossover Nearest Neighbor (GXNN) 
GXNN is similar to GX, but it attempts to find an optimal trip by instead of selecting a city at random 

when both connections are already in the chromosome it selects the nearest neighbor to the current 

city and uses that as the next city in the chromosome. 

 

Figure 2: Since X and Z are already a part of child[i] the algorithm selects H as the nearest neighbor that 

is available. 



GXNN was able to find a fastest trip of 447.388 with a mutation rate of 40. Unfortunately, the added 

time to find the nearest neighbor brought the speed-up down to ~2 times or an execution time of ~12M. 

However, it did prove to be more efficient in the mutation needing only 29 generations to find the 

fastest trip. Output and code can be seen in Appendix B.  

Section 4: Parallelization Techniques and Methods 
Several methods were used to speed-up the overall performance in GX and GXNN implementations. To 

increase performance before parallelization a calculate distance function was written. This function 

populated a CITIES+1 * CITIES+1 array that gives the distance of every city to every other city including 

each city’s distance from {0,0}. This distance array resulted in a 50% speed-up from the method of 

calculating each distance in the evaluate() function. Statements in select() and populate() were changed 

from a string copy function to a simple assignment operator and led to 5% increase in speed. 

Only certain sections of the overall program were parallelized. The section of the evaluate function that 

calculates each chromosome’s fitness was parallelized. Each thread is given a private variable 

(temp_sum) to calculate the trip distance and a private copy of the distance array to ensure there are no 

access conflicts. Distances array is small enough that it can fit in the cache without any problems, array 

size = 5,476 bytes. 

  

Figure 3: Shows the parallelization of the evaluate() function. 

The crossover function “for” loop operates on both parent[i] and [i + 1] during the same iteration and 

does so in sequence TOP_X / 2 times. This allowed for easy parallelization using the standard OpenMP 

command “#pragma omp parallel for”. Each thread was given a private copy of distances to ensure 

there are no access conflicts. 



 

Figure 4: Shows the parallelization of the crossover() function. 

Section 5: Challenges 
GX and GXNN both proved to be difficult to implement. One of the major challenges was inconsistent 

results from the function std::strchr. This was initially used to check if a city was already present in an 

offspring but was found to be inconsistent in its results. To correct this problem I simply wrote a 

chk_contains() function that returns true if the trip contains the city or false if it does not.  

The mutate function needs random numbers in order to be able to function correctly. And the standard 

C++ rand() function is not parallel safe. The alternative function rand_r() is parallel safe but requires that 

a seed be passed to it and the seeds needs changed each iteration. Using the rand_r() did not produce 

an increase in speed thus was not used. In order to produce consistent results srand() cannot be set with 

time(NULL). 

Finding the ideal mutation rate seemed to be a bit of a stab in the dark. A simple “for” loop was added 

to run the algorithm from a mutation rate of 5 – 100. This showed that a mutation rate of 40 yields the 

fastest trip. 

Section 6: Conclusion 
Run on a single thread the algorithm takes time ~11272740 to execute. Running on 4 threads the 

program takes time ~3799415 to execute. This is a parallelized speed-up of 11272740/3799415 = 2.967 

times when compared to itself. When compared to the example given by Dr. Fukuda this a speed-up of 

26234614/3799415 = 6.904. The fastest route found is distance = 447.638 and route = 

V1YZHUE20J6OI84TNXGK9FAL7R3DBQPMSWC5. Source code is in Appendix C. 

The optimal number of threads was found to be 8 on the UWB Linux machines. The algorithm took 

~3403679 time to execute for a relative speed-up of 11272740/3403679 = 3.312 times faster. 



Appendix A – GX 
Greedy Crossover with 4 Threads  

 

Greedy Crossover with 8 Threads 

 
 



Source Code for Crossover() 

/*generate 25,000 offspring from the parents                                     
*                                                                                
* @param parents[TOP_X]: top 25000 chromosomes                                   
* @param offsprings[TOP_X]: will hold new bottom 25000 chromosomes               
* @param distances[CITIES+1][CITIES+1]: used to calculated nearest connection 
*/ 
extern void crossover(Trip parents[TOP_X], Trip offsprings[TOP_X], float distances[CITIES 
+ 1][CITIES + 1]) 
{ 
 //parallelize 
 #pragma omp parallel for firstprivate(distances) 
 for (int i = 0; i < TOP_X; i += 2) 
 { 
  offsprings[i].itinerary[0] = parents[i].itinerary[0]; 
 
  for (int j = 0; j < CITIES - 1; j++) 
  { 
   //find starting city 
   char current_city = offsprings[i].itinerary[j]; 
   int index_city = (current_city >= 'A') ? current_city - 'A' :  

current_city - '0' + 26; 
 
   //find first connection 
   int temp = 0; 
   char connection1; 
   while (parents[i].itinerary[temp++] != current_city); 
   if (temp <= CITIES - 1) 
    connection1 = parents[i].itinerary[temp]; 
   else 
    connection1 = parents[i].itinerary[0]; 
   int index_connection1 = (connection1 >= 'A') ? connection1 - 'A' :  

connection1 - '0' + 26; 
 
   //find second connection 
   temp = 0; 
   char connection2; 
   while (parents[i + 1].itinerary[temp++] != current_city); 
   if (temp <= CITIES - 1) 
    connection2 = parents[i + 1].itinerary[temp]; 
   else 
    connection2 = parents[i + 1].itinerary[0]; 
   int index_connection2 = (connection2 >= 'A') ? connection2 - 'A' :  

connection2 - '0' + 26; 
 
   //find shortest connection 
   char shortest1, shortest2; 
   if (distances[index_city][index_connection1] <  

distances[index_city][index_connection2]) 
   { 
    shortest1 = connection1; 
    shortest2 = connection2; 
   } 
   else 
   { 
    shortest1 = connection2; 
    shortest2 = connection1; 



   } 
 
   //ensure the city is not already present in the trip 
   if (!chk_contains(&offsprings[i], shortest1, j + 1)) 
    offsprings[i].itinerary[j + 1] = shortest1; 
   else if (!chk_contains(&offsprings[i], shortest2, j + 1)) 
    offsprings[i].itinerary[j + 1] = shortest2; 
   else  
    select_city(&offsprings[i], &parents[i+1], j + 1); 
  } 
 
  //creat child 2 as complement of child 1 
  //create complement table 
  char complements[CITIES]; 
  for (int j = 0, k = 35; j < CITIES; j++, k--) //work from outside in 
  { 
   char complement_start = parents[i].itinerary[j]; 
   char complement_end = parents[i].itinerary[k]; 
   int index = (complement_start >= 'A') ? complement_start - 'A' :  

complement_start - '0' + 26; 
   complements[index] = complement_end; 
  } 
 
  //build child 2 
  for (int j = 0; j < CITIES; j++) 
  { 
   char current_city = offsprings[i].itinerary[j]; 
   int index = (current_city >= 'A') ? current_city - 'A' :  

current_city - '0' + 26; 
   offsprings[i+1].itinerary[j] = complements[index]; 
  } 
 } 
 
}  



Appendix B – GXNN 
Greedy Crossover with nearest neighbor and 8 Threads 

 
 
 
Source Code for Nearest Neighbor section 

 
void random_city(Trip* offsprings, Trip* parents, int current_index, float 
distances[CITIES+1][CITIES+1]) 
{ 
 for (int j = 0; j < CITIES; j++) 
 { 
  char c_city = offsprings[0].itinerary[current_index - 1]; 
  int c_index = (c_city >= 'A') ? c_city - 'A' : c_city - '0' + 26; 
  float smallest = 10000; 
  int smallest_i; 
 
  //find nearest != 0 
  for (int k = 0, m = 0; k < CITIES; k++) 
  {  
   c_city = parents[0].itinerary[k]; 
   m = (c_city >= 'A') ? c_city - 'A' : c_city - '0' + 26; 
   if (!chk_contains(&offsprings[0], c_city, current_index)) 
   { 
    if (distances[c_index][m] < smallest &&  

distances[c_index][m] != 0) 
    { 
     smallest = distances[c_index][m]; 
     smallest_i = k; 
    } 
   } 
  } 
  if (smallest_i < 0 || smallest_i > 35) 
  { 
   for (int j = 0; j < CITIES; j++) 
   { 
    if (!chk_contains(&offsprings[0], parents[0].itinerary[j],  

current_index)) 
    { 



     offsprings[0].itinerary[current_index] =  
parents[0].itinerary[j]; 

     j = CITIES; 
    } 
   } 
  } 
  else  
   offsprings[0].itinerary[current_index] =  

parents[0].itinerary[smallest_i]; 
 
 } 
 
} 

  



Appendix C – Source Files 
 

 

 


#include <iostream>  // cout
#include <fstream>   // ifstream
#include <string.h>  // strncpy
#include <stdlib.h>  // rand
#include <math.h>    // sqrt, pow
#include <omp.h>     // OpenMP
#include "Timer.h"
#include "Trip.h"

using namespace std;

// Already implemented. see the actual implementations below
void initialize(Trip trip[CHROMOSOMES], int coordinates[CITIES+1][2]);
void select(Trip trip[CHROMOSOMES], Trip parents[TOP_X]);
void populate(Trip trip[CHROMOSOMES], Trip offsprings[TOP_X]);

// need to implement for your program 1
extern void evaluate(Trip trip[CHROMOSOMES], float distances[CITIES+1][CITIES+1]);
extern void crossover(Trip parents[TOP_X], Trip offsprings[TOP_X], float distances[CITIES+1][CITIES+1]);
extern void mutate(Trip offsprings[TOP_X]);

// additional functions added
void qs_array(Trip trip[], int left, int right);
void build_distance_array(float distances[CITIES+1][CITIES+1], int coordinates[CITIES+1][2]);
void select_city(Trip* offsprings, Trip* parents, int current_index);
bool chk_contains(Trip* offsprings, char check_c, int size);

/*
 * MAIN: usage: Tsp #threads
 */
int main(int argc, char* argv[]) {
	Trip trip[CHROMOSOMES];       // all 50000 different trips (or chromosomes)
	Trip shortest;                // the shortest path so far
	int coordinates[CITIES+1][2];   // (x, y) coordinates of all 36 cities:
	int nThreads = 1;
	float distances[CITIES+1][CITIES+1]; //array used to hold all distances in a 36x36 array

	// verify the arguments
	if (argc == 2)
		nThreads = atoi(argv[1]);
	else {
		cout << "usage: Tsp #threads" << endl;
		if (argc != 1)
			return -1; // wrong arguments
	}
	cout << "# threads = " << nThreads << endl;

	// shortest path not yet initialized
	shortest.itinerary[CITIES] = 0;  // null path
	shortest.fitness = -1.0;         // invalid distance

	// initialize 50000 trips and 36 cities' coordinates
	initialize(trip, coordinates);

	// start a timer 
	Timer timer;
	timer.start();

	// change # of threads
	omp_set_num_threads(nThreads);

	//prepare distance array
	build_distance_array(distances, coordinates);
     
        // find the shortest path in each generation
        for (int generation = 0; generation < MAX_GENERATION; generation++) {

            // evaluate the distance of all 50000 trips
            evaluate(trip, distances);

            // just print out the progress
            if (generation % 20 == 0)
                cout << "generation: " << generation << endl;

            // whenever a shorter path was found, update the shortest path
            if (shortest.fitness < 0 || shortest.fitness > trip[0].fitness) {

                    strncpy(shortest.itinerary, trip[0].itinerary, CITIES);
                    shortest.fitness = trip[0].fitness;

                    cout << "generation: " << generation
                        << " shortest distance = " << shortest.fitness
                        << "\t itinerary = " << shortest.itinerary << endl;
            }

            // define TOP_X parents and offsprings.
            Trip parents[TOP_X], offsprings[TOP_X];

            // choose TOP_X parents from trip
            select(trip, parents);

            // generates TOP_X offsprings from TOP_X parenets
            crossover(parents, offsprings, distances);

            // mutate offsprings
            mutate(offsprings);

            // populate the next generation.
            populate(trip, offsprings);
        }

	// stop a timer
	cout << "elapsed time = " << timer.lap() << endl;

	return 0;
}

/*
 * Initializes trip[CHROMOSOMES] with chromosome.txt and coordiantes[CITIES][2] with cities.txt
 *
 * @param trip[CHROMOSOMES]:      50000 different trips
 * @param coordinates[CITIES][2]: (x, y) coordinates of 36 different cities: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 */
void initialize(Trip trip[CHROMOSOMES], int coordinates[CITIES+1][2]) {
	// open two files to read chromosomes (i.e., trips)  and cities
	ifstream chromosome_file("chromosome.txt");
	ifstream cities_file("cities.txt");

	// read data from the files
	// chromosome.txt:                                                                                           
	//   T8JHFKM7BO5XWYSQ29IP04DL6NU3ERVA1CZG                                                                    
	//   FWLXU2DRSAQEVYOBCPNI608194ZHJM73GK5T                                                                    
	//   HU93YL0MWAQFIZGNJCRV12TO75BPE84S6KXD
	for (int i = 0; i < CHROMOSOMES; i++) {
		chromosome_file >> trip[i].itinerary;
		trip[i].fitness = 0.0;
	}

	// cities.txt:                                                                                               
	// name    x       y                                                                                         
	// A       83      99                                                                                        
	// B       77      35                                                                                        
	// C       14      64                                                                                        
	for (int i = 0; i < CITIES; i++) {
		char city;
		cities_file >> city;
		int index = (city >= 'A') ? city - 'A' : city - '0' + 26;
		cities_file >> coordinates[index][0] >> coordinates[index][1];
	}
	coordinates[CITIES+1][0] = 0;
	coordinates[CITIES+1][1] = 0;

	// close the files.
	chromosome_file.close();
	cities_file.close();

	// just for debugging
	if (DEBUG) {
		for (int i = 0; i < CHROMOSOMES; i++)
			cout << trip[i].itinerary << endl;
		for (int i = 0; i < CITIES; i++)
			cout << coordinates[i][0] << "\t" << coordinates[i][1] << endl;
	}
}

/*
 * Select the first TOP_X parents from trip[CHROMOSOMES]
 *
 * @param trip[CHROMOSOMES]: all trips
 * @param parents[TOP_X]:    the firt TOP_X parents
 */
void select(Trip trip[CHROMOSOMES], Trip parents[TOP_X]) {
	// just copy TOP_X trips to parents
	for (int i = 0; i < TOP_X; i++)
		parents[i] = trip[i];
}

/*
 * Replace the bottom TOP_X trips with the TOP_X offsprings
 */
void populate(Trip trip[CHROMOSOMES], Trip offsprings[TOP_X]) {
	// just copy TOP_X offsprings to the bottom TOP_X trips.
	for (int i = 0; i < TOP_X; i++)
		trip[CHROMOSOMES - TOP_X + i] = offsprings[i];

	// for debugging
	if (DEBUG) {
		for (int chrom = 0; chrom < CHROMOSOMES; chrom++)
			cout << "chrom[" << chrom << "] = " << trip[chrom].itinerary
			<< ", trip distance = " << trip[chrom].fitness << endl;
	}
}

/*Evaluate distance for each trip and sort, 
*
* @param trip[CHROMOSOMES]: all trips
* @param distances[CITIES][CITIES]: all possible distances
*/
extern void evaluate(Trip trip[CHROMOSOMES], float distances[CITIES+1][CITIES+1])
{
	float temp_sum = 0.0;

	//parallelize
	#pragma omp parallel for firstprivate(temp_sum, distances)
	for (int j = 0; j < CHROMOSOMES; j++)
	{
		char city = trip[j].itinerary[0];
		int index = (city >= 'A') ? city - 'A' : city - '0' + 26;
		int index2;
		temp_sum = distances[index][CITIES]; //calculate distance from 0

		for (int i = 0; i < CITIES - 1; i++)
		{
			city = trip[j].itinerary[i + 1];
			index2 = (city >= 'A') ? city - 'A' : city - '0' + 26;
			temp_sum += distances[index][index2];
			index = index2;
		}
		
		trip[j].fitness = temp_sum;
		temp_sum = 0.0;
	}


	//quicksort the array
	qs_array(trip, 0, CHROMOSOMES - 1);

}

/*generate 25,000 offspring from the parents                                    
*                                                                               
* @param parents[TOP_X]: top 25000 chromosomes                                  
* @param offsprings[TOP_X]: will hold new bottom 25000 chromosomes              
* @param distances[CITIES+1][CITIES+1]: used to calculated nearest connection
*/
extern void crossover(Trip parents[TOP_X], Trip offsprings[TOP_X], float distances[CITIES + 1][CITIES + 1])
{
	//parallelize
	#pragma omp parallel for firstprivate(distances)
	for (int i = 0; i < TOP_X; i += 2)
	{
		offsprings[i].itinerary[0] = parents[i].itinerary[0];

		for (int j = 0; j < CITIES - 1; j++)
		{
			//find starting city
			char current_city = offsprings[i].itinerary[j];
			int index_city = (current_city >= 'A') ? current_city - 'A' : current_city - '0' + 26;

			//find first connection
			int temp = 0;
			char connection1;
			while (parents[i].itinerary[temp++] != current_city);
			if (temp <= CITIES - 1)
				connection1 = parents[i].itinerary[temp];
			else
				connection1 = parents[i].itinerary[0];
			int index_connection1 = (connection1 >= 'A') ? connection1 - 'A' : connection1 - '0' + 26;

			//find second connection
			temp = 0;
			char connection2;
			while (parents[i + 1].itinerary[temp++] != current_city);
			if (temp <= CITIES - 1)
				connection2 = parents[i + 1].itinerary[temp];
			else
				connection2 = parents[i + 1].itinerary[0];
			int index_connection2 = (connection2 >= 'A') ? connection2 - 'A' : connection2 - '0' + 26;

			//find shortest connection
			char shortest1, shortest2;
			if (distances[index_city][index_connection1] < distances[index_city][index_connection2])
			{
				shortest1 = connection1;
				shortest2 = connection2;
			}
			else
			{
				shortest1 = connection2;
				shortest2 = connection1;
			}

			//ensure the city is not already present in the trip
			if (!chk_contains(&offsprings[i], shortest1, j + 1))
				offsprings[i].itinerary[j + 1] = shortest1;
			else if (!chk_contains(&offsprings[i], shortest2, j + 1))
				offsprings[i].itinerary[j + 1] = shortest2;
			else 
				select_city(&offsprings[i], &parents[i+1], j + 1);
		}

		//creat child 2 as complement of child 1
		//create complement table
		char complements[CITIES];
		for (int j = 0, k = 35; j < CITIES; j++, k--) //work from outside in
		{
			char complement_start = parents[i].itinerary[j];
			char complement_end = parents[i].itinerary[k];
			int index = (complement_start >= 'A') ? complement_start - 'A' : complement_start - '0' + 26;
			complements[index] = complement_end;
		}

		//build child 2
		for (int j = 0; j < CITIES; j++)
		{
			char current_city = offsprings[i].itinerary[j];
			int index = (current_city >= 'A') ? current_city - 'A' : current_city - '0' + 26;
			offsprings[i+1].itinerary[j] = complements[index];
		}
	}

}

/*based on mutation rate randomly select two cities from a chromosome and swaps
*
* @param offsprings[TOP_X]: holds the bottom 25000 chromosomes to be mutated
*/
extern void mutate(Trip offsprings[TOP_X])
{
    for (int i = 0; i < TOP_X; i++)
    {
        //select whether or not to mutate
        if ((rand() % 100) + 1 < MUTATE_RATE)
        {
                int temp1 = rand() % CITIES; //choose two cities and swap them
                int temp2 = rand() % CITIES;
                char temp_crossover;
                temp_crossover = offsprings[i].itinerary[temp1];
                offsprings[i].itinerary[temp1] = offsprings[i].itinerary[temp2];
                offsprings[i].itinerary[temp2] = temp_crossover;
        }
    }
}

/*quickly sorts the trip array by fitness with shortest first
*
* @param trip[]: holds current generation of chromosomes
* @param left, right: holds the left and right limits of the trip array
*/
void qs_array(Trip trip[], int left, int right) {
	int i = left, j = right;
	Trip temp;
	float pivot = trip[(left + right) / 2].fitness;

	while (i <= j) {
		while (trip[i].fitness < pivot)
			i++;
		while (trip[j].fitness > pivot)
			j--;
		if (i <= j) {
			temp = trip[i];
			trip[i] = trip[j];
			trip[j] = temp;
			i++;
			j--;
		}
	};

	if (left < j)
		qs_array(trip, left, j);
	if (i < right)
		qs_array(trip, i, right);
}

/*evaluate all possible distances and store in a CITIES+1 * CITIES+1 array for increased access time
*
* @param distances[CITIES][CITIES]: used to hold calculated distances for every possible connection
* @param coordinates[CITIES][2]: holds the coordinates for all cities
*/
void build_distance_array(float distances[CITIES+1][CITIES+1], int coordinates[CITIES+1][2])
{
	for (int i = 0; i < CITIES+1; i++)
	{
		for (int j = 0; j < CITIES+1; j++)
		{
			int X1 = coordinates[i][0];
			int X2 = coordinates[j][0];
			int Y1 = coordinates[i][1];
			int Y2 = coordinates[j][1];
			float distance = sqrt(pow((X2 - X1), 2.0) + pow((Y2 - Y1), 2.0));
			distances[i][j] = distance;
		}
	}
}

/* Returns the nearest city that is not already in the offspring
*
* @param *offsprings: contains the current offspring being built
* @param *parents: contains the parent element to find a new city from
* @param current_index: the index of where the next city will be placed
*/
void select_city(Trip* offsprings, Trip* parents, int current_index)
{
	for (int j = 0; j < CITIES; j++)
	{
		if (!chk_contains(&offsprings[0], parents[0].itinerary[j], current_index))
		{
			offsprings[0].itinerary[current_index] = parents[0].itinerary[j];
			j = CITIES;
		}
	}

}

/* Check if trip already contains a value
*
* @param *offsprings: contains the current offspring being built
* @param check_c: check to see if offspring contains this
* @param size: current size of the offspring
*/
bool chk_contains(Trip* offsprings, char check_c, int size)
{
	for (int i = 0; i < size; i++)
	{
		if (offsprings[0].itinerary[i] == check_c)
			return 1;
	}

	return 0;
}

Nathan
File Attachment
Tsp.cpp


#ifndef _TRIP_H_
#define _TRIP_H_

#define CHROMOSOMES    50000 // 50000 different trips                              (DO NOT CHANGE)
#define CITIES         36    // 36 cities = ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789   (DO NOT CHANGE)
#define MAX_GENERATION 150   //                                                    (DO NOT CHANGE)
#define TOP_X          25000 // top 50%                                            (DO NOT CHANGE)
#define MUTATE_RATE		40   	   // 50% for time being                                 (YOU MAY CHANGE IT)
                                                                    
#define DEBUG          false // for debugging   

// Each trip (or chromosome) informatioin
class Trip {
public:
  char itinerary[CITIES + 1];  // a route through all 36 cities from (0, 0) 
  float fitness;               // the distance of this entire route
};

#endif


Nathan
File Attachment
Trip.h


